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1 System Speci�cation: Abstract Modeling and Languages

The design of a system begins with specifying its functionality which includes its behavior over time,
i.e., its temporal properties. To help us specify, understand and organize exactly what the functionality
of the system should be, we can use a variety of conceptual models. Furthermore, this functionality
can be speci�ed at various levels of abstraction such as algorithmic behavior, structural connection of
functional blocks or at a logic level as a netlist of gates [1]. These concepts are well covered in books
such as [2, 3, 4].
Embedded systems used in real-time applications can be modeled as reactive systems. Speci�cation of

reactive systems is discussed in [5, 6]. [7, 8] have a good introduction on how synchronous programming
languages such as Esterel and Argos are used for modeling reactive systems.
Designers use various abstract models for representing the system speci�cation. These abstract models

are designed to capture the control and data ow and the timing behavior of the design. Earlier work on
using state-oriented models such as StateCharts and SpecCharts added concurrency and hierarchy into
�nite state machine models to enhance their ability to capture all aspects of the design of a large system
[9, 10, 11, 12].
There are several other modeling styles such as communicating sequential processes, discrete event

systems et cetera [13, 14] and a good comparison of the various models is provided in [15].
More recently, several C/C++ like languages have been proposed to specify and model systems [16, 17].

These languages have the ability to capture the design at every level of abstraction and are usually
executable. Since these languages are similar to C and C++, they come with software tools which
compile them and run them on standard UNIX and Windows platforms. This executable speci�cation,
coupled with the ability to use the same language at every level of abstraction, greatly aids in the
gradual re�nement of a design from its behavioral description down to its logic level description. SpecC,
SystemC, CynApps and Ocapi are some of the o�erings in this area [18, 19, 20, 17]. These system
description languages are supported with tools which allow easy integration of IP (Intellectual Property)
blocks with a core processor to design entire systems-on-a-chip [21, 22].

2 Hardware-Software Codesign

Increasing complexity has led system architects to co-design hardware and software in embedded
systems by automatically synthesizing the hardware and the software from the initial system speci�cation.
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The evolution of techniques in this �eld can be followed in [23, 24, 25, 26, 27, 28, 29, 30]. This research
work has led to the development of several codesign tools, some of which are now being marketed
commercially [31, 32, 33, 34, 35].
Timing estimation, task partitioning and scheduling, hardware synthesis and software synthesis com-

prise some of the most important and hardest problems in the codesign of embedded systems. Timing
estimation involves estimating the timing budgets or constraints for each task in the system [36, 37, 38].
This timing information can then be used for partitioning the tasks into blocks that will be synthesized
into hardware and tasks that will be run as software on programmable processors [39, 40, 41, 42, 43, 44].
The process of timing estimation and task partitioning is aided by scheduling techniques, which ensure
that the timing constraints of the system speci�cation will be met by the �nal design [45, 46, 47, 48].

3 Hardware Synthesis

Once the tasks are partitioned into hardware and software, the hardware blocks can be synthesized
directly from the behavioral description speci�ed in the system speci�cation; this is known as high
level synthesis. High level synthesis maps a behavioral description by scheduling the operations on the
resources allocated within the given timing constraints and produces a structural register transfer level
(RTL) design [49, 50, 51, 52, 53, 54, 55, 56].
The RTL design can then be synthesized using logic synthesis tools that map components such as

adders, multipliers et cetera to gates, perform boolean optimization, state minimization and �nally,
generate the netlist of the �nal design [2, 57, 58, 59, 60, 61, 4].

4 Software Synthesis

As with hardware synthesis, code is generated for the tasks that are mapped to software after parti-
tioning. These software tasks are mapped to speci�c programmable processors or cores which are usually
o�-the-shelf DSPs or micro-controllers [62, 63]. Software synthesis algorithms have to adhere to phys-
ical memory size constraints while satisfying the timing constraints. Since the system speci�cation is
inherently concurrent, and the software generated for many target architectures has to be sequential, the
software generation process requires linearization or scheduling of operations [64, 65, 66].
Another crucial component of software synthesis is code optimization. Due to strict timing constraints

imposed on embedded systems by real-time concerns, the code optimization problem is more complex
than for general-purpose systems [67, 68, 69, 70, 71, 72, 73].

5 Hardware-Software Co-simulation

Systems containing hardware and software components present special problems for simulation. Durng
co-simulation, events occuring in both the diverse computation domains need to be co-ordinated without
comprimising the speed of the simulation [74, 24, 75, 76, 77].

6 Resources on the Internet

There are a number of sites which maintain links to research groups, researchers, companies, projects
et cetera related to embedded systems, computer-aided design and real-time systems [78, 79, 80, 81, 82].
Several e�orts have been made in the past to collect benchmarks for high level and logic synthesis of

hardware designs. These, along with some newer benchmarks and open source processor cores are also
available on the internet [83, 84, 85, 86, 87, 88]
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