
Analysis of High-level Address Code Transformations
for Programmable Processors�

Sumit Gupta‡ Miguel Miranda§ Francky Catthoor§¶ Rajesh Gupta‡

‡Center for Embedded Computer Systems§DESICS, IMEC Lab.,
Information and Computer Science Kapeldreef 75, 3001

Univ. of California at Irvine Leuven, Belgium
http://www.cecs.uci.edu http://www.imec.be/desics

¶Also Professor at Katholieke Univ. Leuven.
fsumitg,rguptag@ics.uci.edufmiranda,catthoorg@imec.be

Technical Report #00-04
Dept. of Information and Computer Science

Univ. of California at Irvine

April 2000

�This report has been published as a paper at the Design, Automation and Test in Europe (DATE) Conference in
March, 2000. All Copyrights reserved.

1

Abstract

Memory intensive applications require considerable arithmetic for the computation and
selection of the different memory access pointers. These memory address calculations of-
ten involve complex (non)linear arithmetic expressions which have to be calculated during
program execution under tight timing constraints, thus becoming a crucial bottleneck in the
overall system performance. This paper explores applicability and effectiveness of source-
level optimisations (as opposed to instruction-level) for address computations in the context
of multimedia. We propose and evaluate two processor-target independent source-level op-
timisation techniques, namely, global scope operation cost minimisation complemented with
loop-invariant code hoisting, and non-linear operator strength reduction. The transformations
attempt to achieve minimal code execution within loops and reduced operator strengths. The
effectiveness of the transformations is demonstrated with two real-life multimedia application
kernels by comparing the improvements in the number of execution cycles, before and after ap-
plying the systematic source-level optimisations, using state-of-the-art C compilers on several
popular RISC platforms.

2

Contents

1 Introduction 2

2 High-level address optimisation script 3

3 Address expression code extraction 4

4 High-level address transformations 4
4.1 Operation cost minimisation and loop-

invariant code hoisting . 4
4.2 Non-Linear operator strength reduction . 5

5 Experimental framework and results on real-life
demonstrators 7

6 Conclusions 10

7 Acknowledgements 11

List of Figures

1 Processor target independent high-level address optimisation script 3
2 Full-search ME kernel: (a) original segment; (b) after operation cost minimisation; (c) after

loop-invariant code hoisting 5
3 GSM algorithm: (a) original segment; (b) after polynomial induction variable replacement;

(c) after linear IV replacement . .. 6

1 Introduction

Memory intensive applications (e.g., multimedia) require considerable arithmetic for the computa-
tion and selection of the different memory access pointers. These memory address calculations of-
ten involve linear and non-linear arithmetic expressions which are typically embedded into deeply
nested loops. These usually have to be calculated during program execution under tight timing
constraints, thus becoming a crucial bottleneck in the overall system performance. To handle this
complex arithmetic special hardware units have been used in processors, which may be either
programmable or custom hardware[1, 2].

Custom hardware generation solutions have received a lot of attention and a considerable
amount of work has targeted optimising their overhead [2, 3]. However, specialised hardware
units and/or custom hardware generation solutions add to the design complexity and cost. On the
other hand, most programmable multimedia and DSP processors [4, 5] have specialised address
calculation units that provide special addressing modes, like the auto-inc(dec)crement mode, in the
instruction set architecture.

In a programmable processor context, several compiler approaches targeted at instruction-level
optimisations have been proposed [6, 7, 8]. SUIF is instrumented [9] with an additional pass
to do aggressive code-hoisting and some induction variable optimisations at the instruction-level.
However, we show in this paper that much bigger gains can be obtained by performing these
aggressive optimisations at thesource code-levelprior to using standard compilers for low-level
code generation. From our experiments, we deduce that the opportunities present at the high-
level are to a great extent complementary and decoupled from the ones currently exploited at the
instruction-level.

Previous experience with the custom ACU oriented ADOPT approach [3], has shown that when
the exploration/optimisation is done at a higher-level (e.g., the index/address expression-level)
much lower hardware implementation costs and synthesis time are obtained. However, our ADOPT
approach up to now was solely targeted for custom hardware generation. This paper describes
experiments which demonstrate that our previous work, augmented with some additional steps, can
be efficiently used in the context of a software compiler approach. This will allow optimisation of
high-level address generation code by applying optimising processor independent transformations
to the source code. To demonstrate that the resulting high-level code is optimised for performance it
is compiled on several platforms using standard compilers and the results before and after applying
the transformations are compared. These results show that significant improvements are possible.

Also, the ADOPT script can be used as the back end of data transfer and storage exploration
(DTSE) approaches such asAtomium[10] andAcropolis[11] which target low power background
memory organisations and silent bus behaviour. The ADOPT transformations have been verified
to not counteract the memory oriented transformations performed by such DTSE approaches.

Most of the transformations applied for this work have been done manually in a systematic
way. Because of the formalism applied, we believe that these can be automated in a high-level
code optimiser which is our current work. Some of the steps have already been automated in
prototype tools such as the address expression extraction [3] and the exploration support for the
algebraic transformations [12].

2

2 High-level address optimisation script

We refine the high-levelAddressOptimisation script (ADOPT) presented in [13] to also support
programmable processors. The new methodology is a platform independent approach whereby
the address generation code in a given behavioral description is optimised by applying processor
independent transformations. Therefore, the cost model is extended to include performance, in
terms of execution cycles, in addition to power and area. The resulting behavioral code can either
be synthesised into hardware or compiled as software onto a target processor. Once the data-
transfer bottleneck is removed from the initial code, the high-level address transformations lead to
performance improvements irrespective of the architectural characteristics of the implementation
platform.

CDFG
Global

Algebraic
Trafos

Refined sub-script

Global scope
Code Motion

Non-linear
Induct.Anal.

ADOPT
 front-end

custom HW
synthesis

traditional
ILP compilers

C code

C code

Figure 1: Processor target independent high-level address optimisation script

Our previous custom style oriented ADOPT script [13] starts off by extracting the Address
Expressions (AEs) from the CDFG of the given behavioral algorithm and splitting and clustering
them to maximise resource sharing. This is followed by target architecture selection, loop-invariant
code hoisting (CH), induction variable analysis (IVA), and algebraic transformations (AT). The
resulting AEs are then mapped onto the custom hardware processor by using specific synthesis
techniques aimed at thetime-shared cluster-level[14]. However, this ADOPT methodology does
limited CH and IVA and considers these two steps isolated from each other.

In this paper, we refine the ADOPT script (see Figure 1) to propose a more detailed analysis of
the interaction between the global-scope CH and IVA stages and incorporate operation cost min-
imisation (OCM) by exploiting algebraic transformations. The Global Algebraic Transformation
Engine (GLATE) stage [12] is now performed before the other transformations. This is necessary
to create more freedom at the global scope for CH, by exploring AE factorisations different from
those originally present in the code. For custom processor targets, the position of the common-
subexpression elimination stage at the beginning of the subscript did not limit the search space.
However, for programmable processors, exploiting beyond basic-block code invariance by CH is
essential to maximally utilise the limited resources of the underlying platform. Hence, explor-
ing factorisation alternatives increases the search space, therefore, enhancing the opportunities for
other optimisations.

To properly steer GLATE to consider optimal factorisation for global scope common-subexpression
elimination and CH in terms of performance cost, we extended the current model [12, 13] to con-
sider the cheapest context-dependent cost, e.g., the cost of a constant multiplication is the cost of
the corresponding add/subtract/shift network, expressed in cycles and weighted by the execution

3

rate of the corresponding code scope.
The approach starts with a behavioral description of the application in a high-level language,

e.g. C. The result after applying the high-level transformations (see Figure 1) is C code with
optimised addressing functionality. This code can then be used either for hardware ACU generation
or be compiled on a target processor using standard compilers to implement the addressing in
software.

3 Address expression code extraction

The address expressions (AEs) for the indices of arrays are extracted from indexed arrays of the
form A[I1][I2]...[In], by linearising the multi-dimensional arrays into single-dimension linear ar-
rays [3]. The address expression (AE) of the array indices ofA can be expressed as:AE = ((I1*S2
+ I2)*S3 ...)*Sn + In, whereI = [I1, I2, ... In] is the index vector of the array andS= [S1*S2*...
* Sn, S2*S3 *... *Sn, ... Sn, 1] is the storage size vector of the array andSi is the maximal size
of the array in theith-dimension. This explicit AE extraction exposes different opportunities for
operation cost minimisation.

4 High-level address transformations

We now introduce the two main sub-stages of ADOPT.

4.1 Operation cost minimisation and loop-
invariant code hoisting

Common Sub-expression Elimination(CSE) is an important compiler-level transformation that at-
tempts to detect repeating sub-expressions in a piece of code, stores them in a variable and reuses
the variable wherever the sub-expression occurs subsequently [15]. Since the factorisation of ex-
pressions influences CSE/CH drastically, the ADOPT script uses GLATE [12] to find optimal
factorisation possibilities, remove redundant code and propagate constants at the high-level and
beyond basic blocks (across loop and conditional boundaries). In contrast, traditional models used
by ILP compilers typically limit the analysis capabilities for data dependencies that expand beyond
the control-flow boundaries, hence limiting the optimisation capabilities to the local scope (within
basic blocks).

Consider the segment of code from theFull Search Motion Estimationalgorithm (ME) shown
in Figure 2(a). This segment shows a deeply nested loop (3-levels), containing two array accesses.
The address expression equations have already been extracted in the code shown in Figure 2(a) and
the arrays have been linearised as explained in section 3. The transformed code after factorised
CSE using GLATE is shown in Figure 2(b). Variables,cse10 andcse100 are produced by the fac-
torisation engine, and reused in subsequent scopes. Finally, Figure 2(c) shows howcse10 is moved
out of the loops in which it has no dependencies with the loop variables. Similar optimisation

4

 for (j_1=-8; j_1<=8; j_1++) {
 for (k_11=-4; k_11<=4-1; k_11++) {
 for (l_11=-4; l_11<=4-1; l_11++)
 Ad[((208+j_1)*257+8+k_11)*257+ 16+j_1+l_11] =
 A[(8+k_11)*257+16+j_1+l_11];
 }
 Delta += A[3096] -
 Ad[((208+j_1)*257+4)*257+ 16+j_1-4];
 for (l_12=-4+1; l_12<=4-1; l_12++)
 Delta += A[3100+l_12] -
 Ad[((208+j_1)*257+4)*257+16+j_1+l_12];
 } (a)

 for (j_1=-8; j_1<=8; j_1++) {
 for (k_11=-4; k_11<=4-1; k_11++) {
 for (l_11=-4; l_11<=4-1; l_11++) {
 cse10 = (33025*j_1+6869616)*2;
 cse100 = l_11+k_11*257+1032;
 Ad[cse100+cse10] = A[cse100+1040+j_1];
 }
 }
 Delta += A[3096]-Ad[cse10];
 for (l_12=-4+1; l_12<=4-1; l_12++)
 Delta += A[3100+l_12]-Ad[l_12+4+cse10];
 } (b)

 for (j_1=-8; j_1<=8; j_1++) {
 cse10 = (33025*j_1+6869616)*2;
 //cse1 to cse2 obtained after code motion
 cse1 = 1040+j_1;
 cse2 = 4+cse10;
 for (k_11=-4; k_11<=4-1; k_11++) {
 //cse101 obtained after code motion
 cse101 = k_11*257+1032;
 for (l_11=-4; l_11<=4-1; l_11++) {
 cse100 = l_11+cse101;
 Ad[cse100+cse10] = A[cse100+cse1];
 }
 }
 Delta += A[3096]-Ad[cse10];
 for (l_12=-4+1; l_12<=4-1; l_12++)
 Delta += A[3100+l_12]-Ad[l_12+cse2];
 } (c)

Figure 2: Full-search ME kernel: (a) original segment; (b) after operation cost minimisation; (c)
after loop-invariant code hoisting

happen oncse1 andcse2. The results in section 5 demonstrate how these transformations lead to a
significant improvement in performance in terms of execution cycles.

4.2 Non-Linear operator strength reduction

In this section, we demonstrate techniques to transform the polynomial expressions generated from
DTSE approaches [10, 11], so as to achieve non-linear operator strength reduction, whereas stan-
dard compilers only target linear operator strength reduction [15].

The transformations attempt to reduce the number of non-constant multiplications and replace
them by cheaper add/accumulate operations. Constant divisions and multiplications can be further
reduced using conventional linear IVA. Multimedia applications, especially in image rendering and
3D graphics rendering algorithms, are riddled with non-linear arithmetic and the use of multiplies

5

ivtmp = ipos[3];
for (i3=ivtmp; i3<40; i3+=5) {
 cse1 = i3*(i3-1)/2;
 if (i3<=i0) {
 if (i3==i0) rdm = h2[cse2];
 else rdm = rr[cse4+i3];
 } else rdm = rr[cse1+i3];
 rrv[i3/5] = s;
} (a)

ivtmp = ipos[3];
//initialisation of ivpol
ivpol = ivtmp*(ivtmp-1)/2-5*ivtmp;
for (i3=ivtmp; i3<40; i3+=5) {
 //ivpol replaces ’i3*(i3-1)/2’ in ’cse1’
 ivpol += 5*i3-15;
 if (i3<=i0) {
 if (i3==i0) rdm = h2[cse2];
 else rdm = rr[cse4+i3];
 } else rdm = rr[ivpol+i3];
 rrv[i3/5]= s;
} (b)

ivtmp = ipos[3];
ivpol = ivtmp*(ivtmp-1)/2 - 5*ivtmp;
ivlin1 = 5*ivtmp-15; //initialise ivlin1
ivlin2 = ivtmp/5; //initialise ivlin2
for (i3=ivtmp; i3<40; i3+=5) {
 ivpol += ivlin1;
 //ivlin1 replaces ’5*i3-15’ in ’ivpol’
 ivlin1 += 25;
 if (i3<=i0) {
 if (i3==i0) rdm = h2[cse2];
 else rdm = rr[cse4+i3];
 } else rdm = rr[ivpol+i3];
 //ivlin2 replaces ’i3/5’ in ’rrv[i3/5]’
 rrv[ivlin2++]= s;
} (c)

Figure 3: GSM algorithm: (a) original segment; (b) after polynomial induction variable replace-
ment; (c) after linear IV replacement

and divides. However, the address generation logic typically cannot afford the area and power
intensive integer multipliers. After operation strength reduction, the address arithmetic can be
efficiently mapped to architectural extensions such as auto-increment hardware and add-shift-load
chains [6].

Consider the code segment taken from theGSM code book lookupshown in Figure 3(a). The
polynomial expression forcse1 has a very expensive multiplication between two loop dependent
multiplicands. However, the sequence generated by this variable can be analysed at compile time
since it depends the loop variables whose bounds and stride is known. As shown in the transformed
code in Figure 3(b), the polynomial IV,ivpol, is anaccumulatorwith a constant multiplication
which generates the same sequence ascse1. Constant multiplications and divisions can then be re-
moved by conventional linear induction analysis techniques as shown in Figure 3(c). For instance,
the polynomial IV,ivpol, in Figure 3(c) is being generated by adding a linear IV,ivlin1, instead of
the earlier 5� i3 multiplication. Another example is the linear IVs:ivlin2 replacingi3=5 in Figure

6

Behav.Code: SUN UltraSparc 5 (128 MB)
Full Search gcc-2.95.1 -O3 -mtune=ultrasparc cc -c -xO5 -xtarget=ultra2i

Motion Estimation SW Mult Emul. Mult. Enabled SW Mult Emul. Mult. Enabled
Initial 151.3 151.3 96.6 96.6
Algebraic Trafos 125.7 (20.3%) 125.7 (20.3%) 86.0 (12.3%) 86.0 (12.3%)
+ Code Hoisting 121.7 (24.3%) 121.7 (24.3%) 82.7 (16.7%) 82.7 (16.7%)
+ Ind. Anl.(Lin) 114.5 (32.1%) 114.5 (32.1%) 85.8 (13.5%) 85.8 (13.5%)

Table 1: Full Search ME on Sun: number of Kcycles improvement and cumulative speed-up (%).

Behav.Code: HP PA-RISC 2.x (1500 MB)
Full Search gcc-2.91.6 -O3 native cc comp.

Motion Estimation SW Mult. Emul. Mult. Enabled Mult. Enabled
Initial 132.3 132.3 113.9
Algebraic Trafos 91.5 (45.5%) 90.9 (45.5%) 107.5 (5.8%)
+ Code Hoisting 88.2 (49.9%) 88.2 (49.9%) 105.6 (7.8%)
+ Ind. Anl.(Lin) 88.5 (49.4%) 88.5 (49.4%) 105.5 (7.8%)

Table 2: Full Search ME on HP: number of Kcycles improvement and cumulative speed-up (%).

3(c). Similar polynomial IVA opportunities are present throughout the GSM code.
A comprehensive overview of techniques to generate polynomial IVs using a linear IV is pre-

sented by Wolfeet al. [16]. They demonstrate that polynomials of successively higher degree
can be obtained by augmenting them with the polynomial IV of the previous degree. We have
obtained huge gains by applying these transformations on source-level code as discussed in the
results section.

5 Experimental framework and results on real-life
demonstrators

We have performed the high-level transformations described in the previous sections on two al-
ready (manually) optimised real-life demonstrators: the full search ME algorithm and the GSM
code-book lookup-search. The segments of code used from these kernels are responsible for more
than the 60 % of their overall performance cost.

For our experiments, we have used general-purpose microprocessor based platforms (Sun Ul-
traSparcand HP PA-Risc 2.x) instead of DSP compilation and simulation environments. The
reason is state-of-the-art optimising compilers for these platforms are known to be more powerful
than those available for DSPs. However, we believe that these transformations are platform in-
dependent and can easily be used for DSP processors as well, especially since several new DSP
architectures are VLIWs [4, 5]. The code before and after the transformations is compiled with
maximum optimisation flags enabled using GNU’sgcc 2.9xportable compiler on both the Sun

7

Behav.Code: SUN UltraSparc 5 (128 MB)
GSM Codebook gcc-2.95.1 -O3 -mtune=ultrasparc cc -c -xO5 -xtarget=ultra2i
Look-up Search SW Mult. Emul. Mult. Enabled SW Mult. Emul. Mult. Enabled
Initial 15.94 9.79 17.91 10.01
Algebraic Trafos 15.93 (0.0%) 9.81 (-0.2%) 17.91 (-0.0%) 10.01 (-0.0%)
+ Code Hoisting 14.93 (6.8%) 9.08 (7.9%) 16.87 (6.2%) 9.45 (5.9%)
+ Ind.Anl.(Poly) 15.01 (6.2%) 8.68 (12.9%) 15.09 (18.6%) 8.28 (20.9%)
+ Ind.Anl.(Lin) 12.93 (23.3%) 8.45 (15.9%) 13.60 (31.7%) 7.45 (34.4%)

Table 3: GSM codebook on Sun: number of Mcycles improvement and cumulative speed-up (%).

Behav.Code: HP PA-RISC 2.x (1500 MB)
GSM Codebook portable gcc-2.91.6 -O3 native cc comp.
Look-up Search SW Mult. Emul. Mult. Enabled Mult. Enabled
Initial 20.88 10.87 9.26
Algebraic Trafos 21.01 (-0.5%) 10.84 (0.3%) 9.45 (-1.9%)
+ Code Hoisting 18.73 (11.5%) 9.78 (11.1%) 8.55 (8.3%)
+ Ind.Anl.(Poly) 16.75 (24.6%) 8.40 (29.4%) 7.41 (25%)
+ Ind.Anl.(Lin) 15.64 (33.5%) 7.21 (50.7%) 7.01 (32.1%)

Table 4: GSM codebook on HP: number of Mcycles improvement and cumulative speed-up (%).

and the HP platform and Sun Solaris 2.7cc compiler and HP-UX’s 10.xcc compiler. By using
two different compilers on each platform and two different benchmark algorithms, we have tried
to verify that the transformations are independent of the internal idiosyncrasies of the optimising
compilers and the algorithms.

The improvement in the number of cycles that the two algorithms take for execution when
compiled using the portable compiler and the native compiler for both SUN and HP platforms
is shown in Tables 1, 2, 3 and 4. The tables show the number of cycles of execution and the
cumulative speed-up (measured as % overhead in number of cycles of the non-optimised version
over the optimised one). Each table compares the number of cycles when the code is compiled
using software emulation for the integer multiplies by adds and shifts, i.e., by disabling the use of
the multiplier and when the code is compiled so as to use the hardware integer multiply instruction.
This is done since it is desirable to reduce or eliminate multipliers from the ACU so as to reduce
area and power consumption. There is no flag in HP’s native cc compiler to disable the generation
of multiply instructions, so the HP cc results in Tables 1, 2, 3 and 4 only show the results with the
multiplier enabled.

For the Motion Estimation kernel, Tables 1 and 2 compare the results when the applications
are compiled after AT and operation cost minimisation OCM (second row), and after applying the
loop-invariant CH (third row). The tables show that most speed-up is due to the AT exploration
phase on both architectures. After the application of OCM and loop-invariance transformations on
the ME algorithm, a significant (upto 50%) speed-up is achieved.

8

Behav.Code: SUN ULTRASparc 5 (256 MB)
GSM Codebook portable gcc 2.91.6 native-cc
Look-up Search Multiplies Divides Multiplies Divides

Alg.Trafos 1554 188 1665 6.5
+ Code Hoisting 1359 (12.5%) 188 (0.0%) 1548 (7.6%) 6.5 (0.0%)
+ Ind.Anl. (Polynoml.) 1146 (26.5%) 188 (0.0%) 1321 (26.0%) 6.5 (0.0%)
+ Ind.Anl. (Linear) 1146 (26.5%) 25 (86.7%) 1139 (46.2%) 6.5 (0.0%)

Table 5: GSM on Sun: reduction in num. of Kcalls & cumulative saving(%) in SW integer multi-
plies & divides

Behav.Code: HP PA-RISC 2.x (1500 MB)
GSM Codebook portable gcc 2.95.1
Look-up Search Multiplies Divides

Alg.Trafos 1634 188
+ Code Hoisting 1417 (13.2%) 188 (0.0%)
+ Ind.Anl. (Polynoml.) 1146 (29.8%) 188 (0.0%)
+ Ind.Anl. (Linear) 1146 (29.8%) 25 (86.7%)

Table 6: GSM on HP: reduction in num. of Kcalls & cumulative saving(%) in SW integer multi-
plies & divides

For the GSM kernel, Tables 3 and 4 compare the results for when the algorithm is compiled
after exploring AT at the global scope (second row), and then, followed by global-scope CH (third
row). In this driver, CH was applied not only across loop boundaries but also across data-dependent
conditional boundaries, where subexpressions which are defined inside certain conditional basic
blocks have been moved unconditionally up-front in the code and reused in all the remaining occur-
rences. To decide where to move the subexpressions, we have respected the procedural execution
of the basic blocks. By profiling, we have decided when the gain of unconditionally computing the
subexpressions is bigger than the cost of conditionally computing them. Tables 3 and 4 also show
the cumulative numbers after applying the IVA, both polynomial and linear. Its evident from the
tables that for this kernel most of the speed-up is due to IVA.

Note that when performing linear IVA at the source-level, the number of cycles for the ME
algorithm is at times increased marginally, (see last row in Table 1) perhaps because of register
spillage due to the added registers required to store the induction variables. Conventional compilers
are capable of doing simple linear IVA by converting multiplies into adds and shifts and they can
control the register spillage overhead. However, linear IVA can be effectively exploited with DSPs
due to their zero-cycle overhead auto-increment addressing modes in the ACU [6].

We have also found that a similar effect happens in the GSM code. The GSM code is dom-
inated by non-linear arithmetic, with 2.8K integer multiplications and 1.16K constant divisions
being initially executed at run time. After the ADOPT transformations, the new code contains just
154 multiplications and 154 constant divisions (needed for the initialisation of the different induc-

9

tion variables). Tables 5 and 6 show the reduction in number of calls to the SW-emulated multiply
and divide functions at each stage of the transformation script and the cumulative savings as per-
centage reduction. Note that although the effective number of calls to constant multiplications is
not reduced when performing linear IVA, a significant reduction (up to 86%) in calls to constant
divisions is observed.

This experiment demonstrates how applying linear induction analysis may be closely inter-
linked to the steps and passes being performed by the compiler, especially when reducing the
strength of the constant multiplications. However, the rest of the steps, namely global-scope
CSE/CH, non-linear IVA, and possibly even linear IVA for division replacement, remain for the
most part complementary and well decoupled.

In terms of absolute number of cycles of code execution, the native compiler, which is typically
highly optimised for the target processor, performed better than the portable one for both drivers.
However, after applying the ADOPT script, we note that both the compilers perform equally well
in terms of the absolute number of cycles, irrespective of the platform. Also, when we migrated
from gcc 2.8 to gcc 2.9, we found that the absolute number of cycles improved, but contrary
to expectation, the speed-ups after our transformations alsoimproved. Clearly, an aggressive,
processor independent, source-to-source pre-compiler can greatly help improve compilation results
by exploring optimisations at the global scope and remove the effects of syntactic variance and
coding styles. The large search space at the instruction-level makes it more difficult to find global
optimisation opportunities, hence, decreasing exploration productivity.

6 Conclusions

In this paper, we propose a script for advanced high-level address optimisation consisting of a well
defined sequence of source-level transformations. Through our experimental results, we verify
that we achieve significant speed-ups, up to 50%, in terms of number of cycles, and savings, up to
86%, in the number of calls to multiply/divide integer units. Moreover, we demonstrate that these
transformations can be applied at the source-level, followed by the use of standard compilers. We
identify among the proposed transformations those which counteract with the compiler and those
which are complementary to the compiler steps. Finally, we have also demonstrated that the results
obtained after applying the optimisations are near optimal, independent of the compiler and plat-
form selected. This clearly demonstrates the need for a highly aggressive and portable, processor
independent, source-to-source pre-compiler targeted at address computation code optimisation.

Although we have verified the effectiveness of our transformations only with RISC processor
architectures whereas the final target architectures for such algorithms are DSPs, these source-
level transformations are to the most extent, platform-independent and will easily extend to DSPs,
especially contemporary VLIW-like DSP processors [4, 5]. However, more experimentation is
required to determine the interactions that architectural features of RISCs such as caches and large
register sets have with our transformations.

10

7 Acknowledgements

The authors would like to acknowledge the support of the National Science Foundation under grant
CCR-9806898 and DARPA under grant DARPA/ITO DABT63-98-C-004. This research has been
supported by the SMT and IT-IMAGE projects of the Flemish Community - IWT.

References

[1] K.Kitagaki, T.Oto, T.Demura, Y.Araki, T.Takada,A new address generation unit architecture
for video signal processing, Visual Communications and Image Processing,1991.

[2] P.Lippens, J.Van Meerbergen,et al. Phideo: A silicon compiler for high speed algorithms,
Europ. Conf. for Design Automation, 1991.

[3] M.Miranda, F.Catthoor, M.Janssen, H.De Man,ADOPT: Efficient hardware address genera-
tion in distributed memory architectures, Intl. Symp. on System Synthesis, 1996.

[4] Texas Instruments,TI TMS320C6x User’s Guide.

[5] Philips Semiconductor,Trimedia TM1000 Programmable media processor databook.

[6] R.Leupers, P.Marwedel,Algorithms for Address Assignment in DSP Code Generation, Intl.
Conf. on Computer-Aided Design, 1996

[7] A.Sudarsanam, S.Liao, S.Devadas,Analysis and evaluation of address arithmetic capabilities
in custom DSP architectures, Design Automation Conference, 1997.

[8] B.Wess, Minimisation of data address computation overhead in DSP programs, Design Au-
tomation for Embedded Systems, no. 4, 1999.

[9] S.M. Pujare, C.G. Lee, P. Chow,Machine-Independent Compiler Optimizations for the UofT
DSP Architecture, Intl. Conf. on Signal Proc. Apps. and Tech., 1995

[10] F. Catthoor, S. Wuytack, E.De Greef, F. Balasa, L. Nachtergaele, A. Vandecappelle,Cus-
tom Memory Management Methodology: Exploration of Memory Organisation for Embedded
Multimedia System Design, Kluwer Academic Publishers, 1998

[11] K. Danckaert, F. Catthoor, H. De Man,System-level memory management for weakly parallel
image processing, EuroPar Conf., 1996.

[12] M.Janssen, F.Catthoor, H.De Man,A specification invariant technique for operation cost
minimisation in flow-graphs, Intl. Symp. on High-level Synthesis,1994

[13] M.Miranda, F.Catthoor, M. Janssen, H.De Man,High-Level Address Optimisation and Syn-
thesis Techniques for Data-Transfer Intensive Applications, IEEE Trans. on VLSI Systems,
no.4, vol.6, Dec. 1998.

11

[14] S.Note, W.Geurts, F.Catthoor, H.De Man,Cathedral-III: Architecture driven high-level syn-
thesis for high throughput DSP applications, Design Automation Conference, 1991.

[15] A.Aho, R.Sethi, J.Ullman,Compilers: Principles, Techniques and Tools, Addison-Wesley
Publishing Company, 1986.

[16] M.Gerleck, E.Stoltz, M.Wolfe,Beyond induction variables: detecting and classifying se-
quences using a demand-driven SSA form, ACM Trans. Progrm. Languages and Systems:17,
Jan. 1995.

12

