
Network Topology Exploration of Mesh-Based
Coarse-Grain Reconfigurable Architectures ∗

Nikhil Bansal† Sumit Gupta† Nikil Dutt† Alex Nicolau† Rajesh Gupta§

Center for Embedded Computer Systems
†School of Information and Computer Science §Dept. of Computer Science and Engineering

University of California at Irvine University of California at San Diego
{nbansal, sumitg, dutt, nicolau}@cecs.uci.edu gupta@cs.ucsd.edu

Abstract

Several coarse-grain reconfigurable architectures pro-
posed recently consist of a large number of processing el-
ements (PEs) connected in a mesh-like network topology.
We study the effects of three aspects of network topology
exploration on the performance of applications on these ar-
chitectures: (a) changing the interconnection between PEs,
(b) changing the way the network topology is traversed
while mapping operations to the PEs, and (c) changing the
communication delays on the interconnects between PEs.
We propose network topology traversal strategies that first
schedule PEs that are spatially close and that have more in-
terconnections among them. We use an interconnect aware
list scheduling heuristic as a vehicle to perform the net-
work topology exploration experiments on a set of designs
derived from DSP applications. Our experimental results
show that a spiral traversal strategy, coupled with a two
neighbor interconnect topology leads to good performance
for the DSP benchmarks considered. Our prototype frame-
work thus provides an exploration environment for system
architects to explore and tune coarse-grain reconfigurable
architectures for particular application domains.

1 Introduction
Reconfigurable fabrics have emerged as an important

bridge in the gap between ASICs and microprocessors.
They merge the performance of ASICs with the flexibil-
ity of microprocessors. Coarse-grain reconfigurable archi-
tectures trade-off some of the configuration flexibility of
fine-grain FPGAs in return for smaller delay, area and con-
figuration time. They provide massive parallelism, high
computational capability and their behavior can be con-
figured dynamically, thus making them a better alterna-
tive to ASICs and fine-grain FPGAs in many aspects. As
a result, we have seen the emergence of a wide range of
coarse-grain reconfigurable architectures over recent years
[1, 2, 3, 4, 5, 6, 7, 8, 9].

We focus on a set of these architectures that consist of
processing elements (PEs) or arithmetic logic units (ALUs)
connected together by a mesh-like network [5, 7, 8]. This

∗This work was partially supported by NSF grants CCR-0203813, ACI-
0204028, and Hitachi Corporation.

is a popular architecture model which is simple in construc-
tion and scalable due to the ability to add more PEs to the
mesh (or more grids of PEs connected by buses). We focus
on mapping the time consuming and data-intensive loops of
a class of DSP applications to these coarse-grain architec-
tures. The ample resources available in coarse-grain archi-
tectures can be used to exploit the parallelism in, and thus
accelerate, the loops in these applications.

Mapping applications to such architectures is a com-
plex task that is a combination of the traditional operation
scheduling, operation to PE binding (or mapping), and rout-
ing problems. Indeed, we believe that the network topology
(interconnections among PEs) and communication delays
on these interconnects are critical concerns for good map-
ping of applications on these architectures. Also, differ-
ent network and interconnect topologies offer a wide design
space and it is not clear which topologies perform best for a
given class of applications.

In this paper, we explore the effects of varying the net-
work topologies, the topology traversal strategies, and the
delay models for the interconnects on the quality of per-
formance results for applications mapped to these mesh-
based coarse-grain reconfigurable architectures. We employ
an operation to PE mapping technique that exploits tempo-
ral locality between operations by mapping operations with
data dependencies on spatially close PEs in order to mini-
mize the data transfer delays. We present a list scheduling
heuristic that simultaneously considers routing of data be-
tween operations and present scheduling results for a set of
designs derived from DSP applications.

The rest of the paper is organized as follows. Section
2 outlines related work. Next, we describe three important
aspects of network topologies and introduce the issues in-
volved in the mapping problem. We present our scheduling
heuristic in Section 5 and in Section 6, we present our ex-
perimental setup and results. Section 7 concludes the paper.

2 Related Work
Recently, several coarse-grain reconfigurable architec-

tures have been proposed (e.g., [1, 2, 3, 4, 5]). Mortiz et
al. [10] presented a framework that produces an optimal
RAW microprocessor structure [3] under cost and area bal-
ance constraints for a given application. Nageldinger [11]

(a) (b) (c)

Figure 1. Different Connection Topologies

proposed the KressArray Xplorer for KressArray architec-
tures [1] to find the best trade-off between the complexity
of the hardware and an optimization objective such as per-
formance. Bossuet et al. [12] proposed a framework that
performs application profiling and performance estimation
on a range of coarse-grain architectures.

Venkataramani et al. [13] presented a compiler frame-
work for mapping loops written in SA-C language to the
MorphoSys architecture [5]. Mei et al. [14] proposed a
modulo loop scheduling approach to map loops on a generic
reconfigurable architecture and Lee et al. [15] addressed
memory bandwidth and interconnection issues for algo-
rithm mapping. Note that, there is also a body of prior work
on mapping applications to systolic arrays [16].

Our work differs from, and complements previous efforts
by examining the effects of different network interconnec-
tion topologies, different topology traversal strategies, and
different communication delays (again related to network
topology) on system performance.

3 Network Topology Exploration

We target coarse-grain reconfigurable architectures that
consist of a large number of processing elements (PEs) con-
nected together in a 2-D mesh as shown in Figure 1(a). In
this figure, each square box represents a processing element
(or ALU) and the double headed arrows denote data com-
munication links between PEs. We call these links between
PEs as direct interconnects and we denote such a tightly
connected network of PEs as a grid. Multiple such grids
of PEs may be connected together using system buses in a
matrix of grids. This is similar to several coarse-grain ar-
chitectures that have been proposed recently [5, 7, 8].

In our application mapping framework, we support a
family of such coarse-grain architectures by allowing the
designer to vary: (a) the number of PEs in each grid, (b) the
number of grids in a matrix, (c) the network topology or in-
terconnections between the PEs within a grid, (d) the com-
munication penalties on the various interconnects. All the
PEs in the architecture template are considered to be iden-
tical and comprise of exactly same functional units. How-
ever, we allow the designer to specify the configuration of
a PE, in terms of the type and number of functional units in
a PE, the operations that can be executed on the units, and
the execution delay of each unit.

Op1

Op3

Op2

(a) (c)(b)

Op1

Op2

0 1

12

8

4

3

15

2

Figure 2. (a) Sample DFG (b) Zig-zag topology traversal
(c) Op3 suffers a communication delay in this mapping

(a) (b) (c)

Figure 3. Different network traversal strategies: (a) Zig-
zag, (b) Reverse-S, (c) Spiral.

3.1 Different Network Topologies
The architectures shown in Figure 1 illustrate the range

of different network topologies we support within a grid.
Figure 1(a) shows a grid in which PEs are connected to their
immediate neighbors in the same row and same column. In
the grid of Figure 1(b), all the PEs are connected to their
immediate and 1-hop neighbors, i.e., the neighbors that can
be reached by traversing through one other PE. Similarly, in
Figure 1(c), PEs are connected to all other PEs in the same
row and same column. Grids can in turn be connected to
each other by system buses to form a matrix. For example,
in the MorphoSys architecture [5], there are four grids each
of size 4x4 (i.e. each grid has 16 PEs) forming a 2x2 matrix.

3.2 Different Topology Traversal Strategies
Topology traversal, the order in which PEs are traversed,

is another important issue affecting the quality of mapping
results. Consider that we want to map the sample DFG
shown in Figure 2(a) to the architecture shown earlier in
Figure 1(a). One traversal order of PEs is shown in Figure
2(b), wherein PEs are traversed in a zig-zag manner start-
ing from the PE in the top left corner of the grid. Consider
now that Figure 2(c) represents the current state of our map-
ping. Shaded boxes (processing elements PE0 to PE2) in-
dicate that the PE already has an operation mapped on it in
the current cycle. Note that, we number the PEs from PE0

to PE15 from the top left corner down to the bottom right
corner (corresponding to the zig-zag).

If we map Op1 to PE3 and Op2 to PE4 as shown in Fig-
ure 2(c), then we cannot schedule Op3 to execute in the next
cycle. This is because the results from operations Op1 and
Op2 cannot reach any PE in the next cycle. Hence, Op3 will
suffer a communication delay of one cycle. However, if we
map Op2 to PE7, then we can map Op3 to either PE3 or PE7

in the next cycle.
One drawback of zig-zag traversal is that after complet-

ing the mapping of a row, the next PE traversed is not ad-
jacent to the previous PE. To overcome this limitation, we

(a)

Op6

Op5

+

+

+

+

Op4

Op1 Op2 Op3 op3

op4 op5

op6

op1

op3

op2 op4

op6op5

(b) (c)

op1op2

Figure 4. (a) Sample Data Flow Graph (b) Mapping with
penalty of 2 cycles (c) Mapping with no penalty

propose two other topology traversal strategies:
• Reverse-S traversal: As shown in Figure 3(b), this

strategy traverses the network in a reverse-S manner.
This strategy always traverses spatially adjacent PEs.

• Spiral traversal: A better way to traverse the grid in a
spiral manner starting with the PE(s) at the center of
the grid, as shown in Figure 3(c). Thus, this strategy
first maps operations to the central PEs that have more
adjacent neighbors than the PEs at the edges.

We study the effect of these topology traversal strategies on
system/application performance in Section 6.4.

3.3 Different Communication Delays
We enable the designer to specify (a) the communication

delay on direct connections between PEs, (b) delay for 1-
hop communication (i.e., communication through another
PE), and (c) delays on shared system buses connecting PEs
across grids. This models a range of coarse-grain architec-
tures. For example, MorphoSys [5] and MATRIX [18] have
zero communication delay between PEs and one cycle for
shared bus communication. We believe that interconnect
speeds will begin to trail computation delays as technology
improves and thus, we experiment with different communi-
cation models in Section 6.5.

4 Interconnect aware Op to PE mapping
Operation to PE mapping in coarse-grain architectures is

a combination of traditional operation scheduling, resource
binding, and data routing problems [17] as discussed here.

Consider the example DFG shown in Figure 4(a). Let
us say that we have to map this application to the coarse-
grain architecture shown in Figure 4(b). Consider also that
there is no communication delay on direct interconnects be-
tween PEs. For simplicity, in all our examples we show that
operations are mapped on different PEs. In practice, our
scheduler maps two operations on the same PE provided
their execution times do not overlap.

Assume that a multiplication takes 2 cycles and an addi-
tion takes 1 cycle. Then this DFG, in the best case, should
take 5 cycles to execute (the sequence of operations Op2,
Op4, and Op6). However, consider the mapping shown in
Figure 4(b). The total execution time for this mapping is
7 cycles since the data from Op2 takes 1 cycle to reach
Op4 and data from Op4 takes 1 more cycle to reach Op6.
Thus, we have to take the data communication overheads

/* Schedules operations in basic block currBB */
ScheduleBB(currBB, PEList, currCycle)

1: A ← List of all available operations in currBB
2: while (A 6= φ) {
3: foreach (currPE ∈ PEList) {
4: ACurrPE ← A
5: while (ACurrPE 6= φ) {
6: Pick candOp ∈ ACurrPE with highest priority
7: ACurrPE ← ACurrPE - candOp
8: if (IsRoutable(candOp, currPE, currCycle)) {
9: A ← A - candOp
10: Schedule candOp on currPE in currCycle
11: ACurrPE ← φ /* Exit while(ACurrPE) loop */
12: } /* end if */
13: } /* end while */
14: } /* end foreach */
15: currCycle← currCycle + 1
16: } /* end while */ (a)

/* Verifies routability of candOp on currPE*/
IsRoutable(candOp, currPE, currCycle)

1: foreach (predOp ∈ PREDs(Opi)) {
2: predPE ← PE on which predOp is mapped
3: foreach (path∈ PATHs(predPE, currPE)) {
4: if (currCycle < EndTime(predOp) - 1 + Delay(path))
5: or (PathNotAvailable(path, currCycle))
6: return false
7: } /* end of foreach */
8: } /* end of foreach */
9: return true (b)

Figure 5. (a) Algorithm to schedule a basic block (b) Algo-
rithm for verifying the routability.

between operations into consideration during operation to
PE mapping. In Figure 4(c), we show one possible map-
ping in which there is no communication overhead and the
design takes only 5 cycles to execute.

Hence, the total run time of an application includes the
execution time of the operations and the routing delay for
the corresponding operands. The goal of our scheduler is to
minimize the total run time of the application and hence, to
map operations such that routing delay is minimized.

5 Implementation in List Scheduling Heuristic
To perform our network topology exploration experi-

ments, we implemented our techniques in a list scheduling
algorithm [17]. However, our strategies are independent of
the scheduling heuristic and can be used in other heuristics
such as force-directed scheduling as well.

Our list scheduling heuristic uses interconnect informa-
tion (connectivity and delays) between PEs and attempts to
map operations with data dependencies on spatially close
PEs in order to exploit the inherent parallelism. The sched-
uler traverses the control-data flow graph of the application
and schedules one basic block at a time. Currently, we do

(c)(b)(a)

Op2

Op3

Op1

Cycle = 1

Cycle = 0

Cycle = 2

PE4
Op1 Op3

Op2
PE6

PE2PE0 PE3

PE15
PE15

PE0 PE3P1

P2

Figure 6. (a) Example of a small DFG. (b) Verifying the
ability to route data. (c) Showing Paths between PEs

not support speculation, predication and do not take mem-
ory bus bandwidth into consideration [15].

The heuristic for scheduling a basic block, ScheduleBB,
is listed in Figure 5(a). This heuristic takes as input PEList,
the list of all the PEs in the architecture. The PEs in PEList
are ordered based on the traversal strategy. A global clock
cycle currCycle is maintained during scheduling.

The ScheduleBB heuristic starts by collecting a list of
available or ready operations, A . Available operations are
operations whose data dependencies are satisfied and can
be scheduled in the current cycle. For each PE currPE, we
first make a copy of the available list as AcurrPE (lines 3
and 4 in Figure 5(a)). Next, the heuristic chooses the oper-
ation (candOp) with the highest priority from AcurrPE . The
priority of an operation is calculated as one more than the
maximum of the priorities of all the operations that use its
result. Operations whose results are not read (i.e., primary
outputs) have a priority of one. Thus, we give preference to
operations on the longest data dependency (critical) paths.

The scheduler calls the IsRoutable function to verify the
ability to route data to candOp. This function, outlined in
Figure 5(b), checks if the data from all the predecessors of
candOp (operations whose results candOp reads) are avail-
able at currPE in currCycle. Thus, the IsRoutable function
checks all the paths from predPE (on which the predeces-
sor operation is mapped) to currPE by calling the function
PATHs (lines 2 and 3 in Figure 5(b)). These paths and the
delays on them are determined statically before scheduling.

There are two situations in which we cannot use a path
from predPE to currPE: either the cycle in which the pre-
decessor operation finishes execution (EndTime(predOp)
- 1) summed with the delay of the path (Delay(path)) is
larger than the current cycle (currCycle), or if the path is
not available, i.e., some connection on the path is used by
another data communication in the current cycle.

If the IsRoutable function finds no path, then the
ScheduleBB considers the next operation in ACurrPE , till all
the operations are exhausted. If IsRoutable returns a true
result, candOp is mapped on currPE and scheduled to ex-
ecute in currCycle (lines 7 to 11 in Figure 5(a)). Usage in-
formation for all paths required for data transfers is updated.
In this way, the ScheduleBB heuristic schedules operations
on each PE in PEList and then increments currCycle when
PEList is exhausted. This process is continued until all the
available operations in the currBB have been scheduled.

The example in Figure 6 illustrates the logic behind the

Config Grid Direct Num of Resembling
Name Size Connects Grids Architecture
RCDN RxC D N
4414 4x4 1 4 DReAM [8]
4424 4x4 2 4
4434 4x4 3 4 MorphoSys [5]
8811 8x8 1 1 REMARC [7]
8821 8x8 2 1
8831 8x8 3 1

Table 1. Characteristics of Different Architectures

IsRoutable function. If we map Op1 and Op2 to PE4 and
PE2 as shown in Figure 6(b), then to map Op3 on PE6, we
have to route the result of Op1 to PE6 from PE4. If the
communication delay from PE4 to PE6 is one cycle and Op1

executes in one cycle (it starts execution in cycle 0), then we
can schedule operation Op3 in cycle 2 and map it on PE6.

While determining the paths from one PE to another, we
only consider the most direct (and shortest) paths among
PEs. Figure 6(c) shows the most direct path, P1, from PE0

to PE3 (since these are in the same row). In contrast, there
are two paths (P1 and P2) between PE0 and PE15.

6 Experimental Setup and Results
In order to perform the network topology exploration, we

implemented our techniques and the mapping algorithm in a
prototype compiler framework. This framework accepts an
application in C and applies basic compiler transformations
such as copy propagation and dead code elimination. In
this section, we present results for experiments by varying
different network topology parameters.

We modeled six different architecture configurations
listed in Table 1. The name of each configuration (column
1) is represented as a 4 digit number (RCDG) where each
digit signifies an architecture parameter: R and C represent
the number of rows and columns in the grid, D is the num-
ber of direct connections each PE has, and G is the number
of grids in the configuration. The last column lists the ar-
chitectures that these configurations resemble. The number
of PEs in every configuration is 64. Hence, configurations
4414, 4424, and 4434 consist of four grids of the architec-
tures shown earlier in Figure 1(a), (b), and (c) respectively.

We performed the experiments with two different com-
munication delay models:
• Delay Model DM0: Direct connection delay is zero. 1-

hop communication through another PE and inter-grid
shared buses take one cycle (corresponds to [5, 18]).

• Delay Model DM1: Direct connection delay is one cy-
cle. 1-hop communication and shared buses take two
cycles.

In both of these models, only one pair of PEs can use a
shared bus at a time. We take the simplest configuration as
the base case for all our experiments: 4414 configuration
with zig-zag topology traversal strategy.

6.1 Characteristics of Benchmarks
We used a set of eight designs drawn from the DSP do-

main for our experiments. To give some insight into the

Design Ops Cycles IPC Utilization
FFT 286 76 4.26 6.67%
ATR 508 75 8.47 13.23%

Laplace 608 22 30.40 47.50%
Sor 630 93 7.59 11.86%

Lowpass 652 105 7.85 12.27%
PDE 463 81 5.71 8.93%

Predictor 618 102 6.06 9.47%
Hydro 1290 37 36.85 57.59%

Table 2. Scheduling results for the eight designs on 4414
configuration with zig-zag traversal

0

300

600

900

1200

1500

1800

FFT
ATR

La
pla

ce Sor

Lo
wpa

ss
PDE

Pre
dic

to
r

Hyd
ro

C
yc

le
s

unroll 0
unroll 2
unroll 5
unroll 10
unroll 20
unroll all

Figure 7. Effect of unrolling factor on performance results
for configuration 4414 using zig-zag traversal

characteristics of these designs, we present scheduling re-
sults for the designs on base case in Table 2. The columns
in this table list the name of the design, the number of oper-
ations in the design, the number of cycles it takes to execute
on the 4414 configuration, the instructions per cycle (IPC)
it achieves, and the percentage utilization of the PEs in the
matrix. The typical run time of our scheduler is about 15
user seconds on a 400 Mhz UltraSparc-II.

From the results in Table 2, we see that designs such
as Laplace and Hydro achieve a relatively high IPC. This
is because there is significant instruction level parallelism
in these designs and few or no inter-iteration dependencies
– so several iterations can execute in parallel. In contrast,
other designs have high inter-iteration read after write data
dependencies. As a result, these designs are not able to fully
utilize the PEs available, thus, leading to poor performance.

6.2 Effect of Unrolling Factor
In order to expose the parallelism of the application, we

unroll the loops that increase the number of operations to
map. In case of nested loops, we unroll the innermost loop.
Figure 7 shows the effect of varying the unrolling factor
for the base configuration (RCDG = 4414). We got similar
results for all the other configurations as well.

The results in Figure 7 demonstrate that the performance
improves rapidly as the unrolling factor is increased from
0 to 10. This is because the opportunities to extract par-
allelism increase as the number of available operations in-
crease due to unrolling. When we unroll the loop further,
there is improvement only for Laplace and Hydro. This is
because in all other designs, most of the operations gen-
erated due to unrolling are dependent on operations from
previous iterations. The improvement up to unrolling fac-
tor of 10 is due to early scheduling of non-dependent oper-
ations. In the designs where there are less inter-iteration

No. of Cycles for Different Configurations
Design 4414 4424 4434 Total 8811 8821 8831 Total

Reduc. Reduc.
FFT 76 67 67 11.8 % 74 67 67 9.4 %
ATR 75 69 69 8.0 % 74 68 66 10.8 %

Laplace 22 20 20 10.0 % 20 18 17 15.0 %
Sor 93 83 83 10.7 % 94 85 83 10.1 %

Lowpass 105 97 87 17.14 % 99 94 85 14.1 %
PDE 81 72 72 11.1 % 78 71 67 14.4 %

Predictor 102 93 93 8.8 % 100 91 89 11.0 %
Hydro 37 35 35 5.3 % 36 35 34 5.5 %

Table 3. Delay model DM0: Performance comparison for
different configurations with zig-zag topology traversal.

0

20

40

60

80

100

FFT
ATR

La
pla

ce Sor

Lo
wpa

ss
PDE

Pre
dic

to
r

Hyd
ro

C
yc

le
s

Zig-zag
Reverse-S
Spiral9.2% 17.1%

5%

10.6% 11.7% 0%

0%

0%

Figure 8. Delay model DM0: Effect of Network Traversal
Strategy on performance for configuration 4414

RAW data dependencies (Laplace and Hydro), unrolling
keeps improving the performance. For the rest of the ex-
periments, we unroll the loops in the designs by 10, since
this gives substantial improvement in ILP.

6.3 Effect of Varying Configurations

Table 3 compares the number of cycles each design takes
to execute on the different architecture configurations using
zig-zag traversal. This table also shows the percentage re-
duction in cycles on configurations having three direct con-
nections over the configurations having one connection.

The results in this table demonstrate that the perfor-
mance improves significantly as the number of direct con-
nections increase from 1 to 2 (for example from configura-
tion 4414 to 4424). A higher number of direct connections
increases the opportunity to map the dependent operations
without incurring any communication penalty.

In contrast, there is almost no performance improvement
when number of direct connections increase from 2 to 3
(configuration 4424 to 4434). This is because, when we
change the configuration from 4424 to 4434, the connec-
tivity improves only for the PEs at the corner of each grid
since remaining PEs are already connected to other PEs in
the same row and column (because of smaller grid size).
However, for the larger grids, connectivity improves for all
the PEs. As a result performance does improve from config-
uration 8821 to 8831 for some designs. These experiments
show that a network topology in which each PE has two
connections to other PEs in the same row and column is
sufficient to exploit the ILP for these designs.

No. of Cycles for Different Configurations
Design 4414 4424 4434 Total 8811 8821 8831 Total

Reduc. Reduc.
FFT 133 123 117 12.0 % 130 124 117 10.0 %
ATR 102 97 96 5.8 % 99 99 96 3.0 %

Laplace 26 25 23 11.5 % 24 23 21 12.5 %
Sor 121 112 107 11.6 % 119 112 105 11.8 %

Lowpass 147 133 117 20.4 % 137 125 117 14.6 %
PDE 101 92 91 9.9 % 100 94 91 9.0 %

Predictor 143 129 129 9.8 % 138 128 122 11.6 %
Hydro 45 42 42 6.7 % 45 42 41 8.9 %

Table 4. Delay model DM1: Performance comparison for
different configurations with zig-zag topology traversal.

0

20

40

60

80

100

120

140

FFT
ATR

La
pla

ce Sor

Lo
wpa

ss
PDE

Pre
dic

to
r

Hyd
ro

C
yc

le
s

Zig-zag
Reverse-S
Spiral

10.9%

3%

7.7%

7.8%

8.0%

2%

1%

7.7%

Figure 9. Delay model DM1: Effect of Network Traversal
Strategy on performance for configuration 4414

6.4 Effect of Topology Traversal Strategy
In this section, we show the effect of the different traver-

sal strategies discussed in Section 6.4 on the scheduling re-
sults (cycles). Figure 8 shows the scheduling results for
three traversal strategies for the base configuration.

From this figure, we can see that reverse-S traversal gives
modest improvements in some cases. The largest improve-
ments in performance (cycles) are achieved using spiral
traversal (up to 17 % for ATR over zig-zag traversal). We
found that this is because mapping operations first to the
PEs at the center of the grid – that are better-connected than
PEs at the edges – enables more opportunities to schedule
the dependent operations.

6.5 Effect of Delay Model
In this section, we present the results corresponding to

delay model DM1 and compare them with the results shown
in previous sections. Recall that in this model, delay be-
tween adjacent PEs is one cycle and delay on buses is two
cycles. Table 4 shows the performance of various archi-
tecture configurations with this delay model using zig-zag
topology traversal and Figure 9 shows the effect of different
topology traversal strategies with delay model DM1.

The results in Table 4 show that in most of the bench-
marks, the gains over different configurations become more
prominent as the penalty on various connections is in-
creased. This is because as the communication penalty is
more in this model, any saving in communication delay (due
to better connectivity) leads to relatively higher improve-
ment. Figure 9 shows that with the DM1 delay model, al-

most every design gives some improvement with the spiral
traversal over zig-zag traversal as opposed to model DM0
in which some benchmarks do not show any improvement.

7 Conclusion and Future Work
We explored three aspects of network topology in mesh-

based coarse-grain reconfigurable architectures: (a) inter-
connects in the network, (b) topology traversal, and (c)
communication delays. Our experimental results show that
a topology in which each PE is connected to two other PEs
in the same row and column is enough to exploit all the
available instruction-level parallelism (ILP) in the set of
DSP applications we explored. Also, we achieve higher per-
formance by employing the spiral network topology traver-
sal strategy since it exploits spatial locality between PEs
and first maps PEs that have more interconnections. In fu-
ture work, we plan to explore speculative code motions and
loop transformations to improve the ILP in these designs.

References
[1] R. W. Hartenstein, R. Kress. A datapath synthesis system for

the reconfigurable datapath architecture. ASP-DAC, 1995.
[2] C.Ebeling, et al. Mapping applications to the rapid config-

urable architectures. In FCCM, 1997.
[3] W. Lee, et al. Space-time scheduling of instruction-level par-

allelism on a RAW machine. ASPLOS, 1998.
[4] S. Cadambi, S. C. Goldstein. Fast and efficient place and route

for pipeline reconfigurable architectures. ICCD, 2000.
[5] H. Singh et al. Morphosys: an integrated reconfigurable sys-

tem for data parallel and computation-intensive applications.
IEEE Trans. on Comps., 2000.

[6] R. Hartenstein. A decade of reconfigurable computing: A vi-
sionary retrospective. DATE, 2001.

[7] T. Miyamori and K. Olukotun. REMARC: Reconfigurable
multimedia array coprocessor. In FPGA, 1998.

[8] J. Becker et al. Architecture and application of a dynamically
reconfigurable hardware array for future mobile communica-
tion systems. In IEEE Symposium on FCCM, 2000.

[9] P. Schaumont et al. A quick safari through the reconfigurable
jungle. In Design Automation Conference, 2001.

[10] C. A. Mortiz, D. Yeung, and A. Agarwal. Exploring optimal
cost-performance designs for raw microprocessors. In IEEE
Symposium on FCCM, 1998.

[11] U. Nageldinger. Coarse-grained reconfigurable architectures
design space exploration. Ph.D. Thesis, University of Kaiser-
lautern, Germany, 2001.

[12] L. Bossuet, G. Gogniat, and J. Philippe. Fast design space
exploration method for reconfigurable architectures. Engg. Of
Reconfig. Systems and Algos., 2003.

[13] G. Venkataramani, et al. A compiler framework for map-
ping applications to a coarse-grained reconfigurable computer
architecture. In CASES, 2001.

[14] B. Mei, et al. Exploiting loop-level parallelism on coarse-
grained reconfigurable architectures ucing modulo schedul-
ing. In DATE, 2003.

[15] J. Lee, K. Choi, N. Dutt. Compilation approach for coarse-
grained reconfigurable architectures. IEEE D&T, 2003.

[16] P. Quinton and Y. Robert. Systolic Algorithms and Architec-
tures. Prentice Hall, 1991.

[17] G. De Micheli. Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, 1994.

[18] E. Mirsky and A. DeHon. Matrix: A reconfigurable comput-
ing architecture with configurable instruction distribution and
deployable resources. FCCM, 1996.

